What is a solar inverter and how does it work?
A solar inverter is one of the most crucial parts of a solar power system. A solar inverter converts the energy output from solar panels into a usable electricity form, to be utilised in your home or workplace.



How does a solar inverter work?
A solar inverter works by taking in the variable direct current, or ‘DC’ output, from your solar panels and transforming it into alternating 120V/240V current, or ‘AC’ output. The appliances in your home run on AC, not DC, which is why the solar inverter must change the DC output that is collected by your solar panels.
To be a little more technical, the sun shines down on your solar panels (or photovoltaic (PV) cells), which are made of semiconductor layers of crystalline silicon or gallium arsenide. These layers are a combo of both positive and negative layers, which are connected by a junction. When the sun shines, the semiconductor layers absorb the light and send the energy to the PV cell. This energy runs around and bumps electrons lose, and they move between the positive and negative layers, producing an electric current known as direct current (DC). Once this energy is produced, it is either stored in a battery for later use or sent directly to an inverter (this depends on the type of system you have).
When the energy gets sent to the inverter, it is in DC format but your home requires AC. The inverter grabs the energy and runs it through a transformer, which then spits out an AC output. The inverter, in essence, ‘tricks’ the transformer into thinking that the DC is actually AC, by forcing it to act in a way like AC – the inverter runs the DC through two or more transistors that turn on and off super fast and feed two varying sides of the transformer.